Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
algcurves[Siegel] - use Siegel's algorithm for reducing a Riemann matrix
Calling Sequence
Siegel(B)
Parameters
B
-
Riemann matrix
Description
A Riemann matrix is a symmetric matrix whose imaginary part is strictly positive definite. In the context of algebraic curves, such a matrix is obtained as a normalized periodmatrix of the algebraic curve.
A Siegel transformation is a transformation from the canonical basis of the homology of a Riemann surface to a new canonical basis of the homology on the Riemann surface such that:
The real part of the new Riemann matrix has entries that are less than or equal to .
The imaginary part of B is strictly positive definite. Then it can be decomposed as . The columns of T generate a lattice L. Then
The length of the shortest element of L has a lower bound of ,
and
: {, an integer vector} has an upper bound depending only on R and g (=dimension of B) (thus not on B).
The Siegel(B) command returns a list where is the new Riemann matrix, and is the symplectic transformation matrix on the canonical basis of the homology such that the Riemann matrix in the new basis is . If B is a by matrix, then is a by matrix. If , where , and are by matrices, the new Riemann matrix is .
Examples
See Also
algcurves[homology], algcurves[periodmatrix], RiemannTheta
References
Deconinck, B., and van Hoeij, M. "Computing Riemann Matrices of Algebraic Curves." Physica D Vol 152-153, (2001): 28-46.
Siegel, C. L. Topics in Complex Function Theory. Vol. 3. Now York: Wiley, 1973.
Download Help Document