Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
VectorCalculus[ConvertVector] - converts Cartesian free Vectors, rooted Vectors and position Vectors among themselves
Calling Sequence
ConvertVector(v,form)
ConvertVector(v,form, root )
Parameters
v
-
'Vector'(algebraic); the Cartesian free Vector, rooted Vector or position Vector to convert
form
name; specify the type of Vector to be converted to: free, rooted or position
root
(optional) list(algebraic) or Vector(algebraic); root point of the converted Vector
Description
The ConvertVector command converts Cartesian free Vectors, rooted Vectors and position Vectors among themselves by specifying the desired type. If v is not a Cartesian Vector an error is raised.
If form is rooted, the root point can be specified as a list or a free Vector with the extra optional parameter root. If root is a list, it is interpreted in Cartesian coordinates, if it is a free Vector in non-Cartesian coordinates, an appropiate transformation is made to obtain a Cartesian root.
If form is rooted, v is a free, rooted or position Vector and root is provided, the result is the Vector rooted at root.
If form is rooted, v is a position Vector and root is not provided, then the Vector is rooted at the Cartesian origin.
If form is rooted, v is a free Vector and root is not provided an error is raised.
Examples
See Also
VectorCalculus, VectorCalculus[About], VectorCalculus[PlotPositionVector], VectorCalculus[PositionVector]
Download Help Document