Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Matrix Action: 2-D
Description
This template demonstrates the effect of multiplying a vector by a matrix. Enter a 2 × 2 matrix and press Start. The vectors and are displayed and drawn. The vector is the black vector in the lower graph, whereas the vector is the black vector in the upper graph. The upper graph shows the orbit made by the tip of as traverses the unit circle. The eigenpairs for the matrix are displayed on the left. If real, the normalized eigenvectors and their negatives are drawn in red and green in the lower graph. Moving the slider will change the angle the unit vector x makes with the positive -axis. As the slider is moved, the upper graph will display the vector and the varying norm of will be displayed on the left.
Matrix:
Eigenpairs
=
Commands Used
LinearAlgebra[Norm], LinearAlgebra[Eigenvectors], plots[arrow], plots[display]
Related Task Templates
Linear Algebra > Visualizations > EigenPlot Tutor
See Also
LinearAlgebra[Eigenvalues], LinearAlgebra[Eigenvectors]
Download Help Document