Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Student[NumericalAnalysis][AddPoint] - return an interpolated polynomial structure with a newly added point
Calling Sequence
AddPoint(p, pts)
AddPoint(p, pts, bcs)
Parameters
p
-
a POLYINTERP structure
pts
numeric, list(numeric, numeric), list(numeric, numeric,numeric); the new data point (node) to be added
bcs
list(numeric, numeric); new boundary conditions for an interpolating polynomial created using the cubic spline method
Description
The AddPoint command takes the point(s) to be added and recomputes the interpolated polynomial from p with the new point(s) and returns the adjusted POLYINTERP structure.
This command is convenient because it prevents you from having to reenter all previous options and data with the new point into the PolynomialInterpolation command or the CubicSpline command to create a new POLYINTERP structure.
If the POLYINTERP structure was created using the CubicSpline command and the boundary conditions are not natural, then new boundary conditions bcs at the end points must be specified.
Notes
This procedure operates numerically; that is, inputs that are not numeric are first evaluated to floating-point numbers before computations proceed.
Examples
Add another node.
The Neville Table now has another row.
See Also
Student[NumericalAnalysis], Student[NumericalAnalysis][BasisFunctions], Student[NumericalAnalysis][ComputationOverview], Student[NumericalAnalysis][CubicSpline], Student[NumericalAnalysis][DividedDifferenceTable], Student[NumericalAnalysis][InterpolantRemainderTerm], Student[NumericalAnalysis][NevilleTable], Student[NumericalAnalysis][PolynomialInterpolation]
Download Help Document