Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
PolynomialTools[CoefficientVector] - return a Vector of coefficients from a univariate polynomial
PolynomialTools[CoefficientList] - return a list of coefficients from a univariate polynomial
Calling Sequence
CoefficientVector(p, x, vectoropts, orderopts)
CoefficientList(p, x, orderopts)
Parameters
p
-
polynom(anything, x)
x
name of main variable
vectoropt
(optional) a sequence of Vector constructor options; see Vector
orderopts
(optional) equation of the form termorder=reverse or termorder=forward
Description
The CoefficientVector(p, x) calling sequence returns a Vector of coefficients from a polynomial p in x.
The CoefficientList(p, x) calling sequence returns a list of coefficients from a polynomial p in x.
If the term order is not specified or termorder=forward, for , the k-th element of the Vector or list returned corresponds to .
If termorder=reverse is specified, then the coefficients will be stored in the reverse of the above order.
These commands are useful because the Maple command coeff is of linear complexity in the degree of the polynomial. Thus, a naive implementation of CoefficientVector would be of quadratic complexity. The actual implementation is of linear complexity. In fact, for CoefficientVector, if sparse storage is specified as an option, the complexity is linear in the actual number of terms.
The inverse commands are FromCoefficientVector and FromCoefficientList.
Examples
For the zero polynomial, the CoefficientVector command returns a zero-dimensional Vector and the CoefficientList command returns an empty list.
Non-expanded polynomials will also work but since collect will be called on them, this could be inefficient.
The coefficients of the polynomial do not have to be numbers.
See Also
coeff, coeffs, expand, FromCoefficientList, PolynomialTools, Vector
Download Help Document