Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LinearAlgebra[Modular][MatGcd] - compute mod m GCD from Matrix of coefficients
Calling Sequence
MatGcd(m, A, nrow)
Parameters
m
-
modulus
A
mod m Matrix; each row stores the coefficients of a polynomial
nrow
number of rows in A containing polynomial coefficients
Description
The MatGcd function computes the GCD of the nrow polynomials formed by multiplication of the input Matrix A by the Vector . It is capable of computing the mod m GCD of more than two polynomials simultaneously.
Each polynomial must be stored in a row of the input Matrix, in order of increasing degree for the columns. For example, the polynomial is stored in a row as [3, 2, 1].
On successful completion, the degree of the GCD is returned, and the coefficients of the GCD are returned in the first row of A.
Note: The returned GCD is not normalized to the leading coefficient 1, as the leading coefficient is required for some modular reconstruction techniques.
This command is part of the LinearAlgebra[Modular] package, so it can be used in the form MatGcd(..) only after executing the command with(LinearAlgebra[Modular]). However, it can always be used in the form LinearAlgebra[Modular][MatGcd](..).
Examples
An example of three polynomials with a known GCD.
An example of a trivial GCD.
See Also
coeff, Expand, LinearAlgebra/Details, LinearAlgebra[Modular], LinearAlgebra[Modular][Mod], randpoly, seq, trunc
Download Help Document