Example 1.
We define a 5 dimensional representation of a 3 dimensional solvable Lie algebra.
>
|
|
| (2.1) |
>
|
|
alg1 >
|
|
V1 >
|
![M := map(Matrix, [[8, 8, 0, 0, 0], [-1, 5, 6, 0, 0], [0, -2, 2, 4, 0], [0, 0, -3, -1, 2], [0, 0, 0, -4, -4]], [[8, 16, 0, 0, 0], [-1, 4, 12, 0, 0], [0, -2, 0, 8, 0], [0, 0, -3, -4, 4], [0, 0, 0, -4, -8]], [[-4, -8, 0, 0, 0], [1, -1, -6, 0, 0], [0, 2, 2, -4, 0], [0, 0, 3, 5, -2], [0, 0, 0, 4, 8]])](/support/helpjp/helpview.aspx?si=6631/file05844/math148.png)
|
V1 >
|
|
| (2.2) |
We find a new basis for the representation space in which the matrices are all upper triangular.
alg1 >
|
|

| (2.3) |
To verify this result we use the ChangeBasis command to change basis in the representation space.
V1 >
|
|
| (2.4) |
Example 2.
We define a 6 dimensional representation of a 3 dimensional solvable Lie algebra.
alg1 >
|
|
| (2.5) |
alg1 >
|
|
Alg2 >
|
|
V2 >
|
![M := map(Matrix, [[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [-3, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, -3, 0, 1, 0, 0], [0, 0, -2*3, 0, 2, 0]], [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [-1, -3, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, -1, 0, -3, 0, 0], [0, 0, -2, 0, -2*3, 0]], [[2*3, -2, 0, 0, 0, 0], [1, 2*3, 0, -1, 0, 0], [0, 0, 3, 0, -1, 0], [0, 2, 0, 2*3, 0, 0], [0, 0, 1, 0, 3, 0], [0, 0, 0, 0, 0, 0]]])](/support/helpjp/helpview.aspx?si=6631/file05844/math205.png)
|
V2 >
|
|
| (2.6) |
In this example some of the eigenvectors found by the RepresentationEigenvector program are complex and it is not possible to find a real basis in which the representation is upper triangular.
Alg2 >
|
|
| (2.7) |
Alg2 >
|
|

| (2.8) |
V2 >
|
|
| (2.9) |
To obtain an upper triangular representation with respect to a complex basis, use the optional argument fieldextension = I.
Alg2 >
|
|
![[_DG([["vector", V2, []], [[[6], 1]]]), _DG([["vector", V2, []], [[[3], 1], [[5], I]]]), _DG([["vector", V2, []], [[[3], 1], [[5], -I]]]), _DG([["vector", V2, []], [[[1], 1], [[2], I], [[4], -1]]]), _DG([["vector", V2, []], [[[1], 1], [[4], 1]]]), _DG([["vector", V2, []], [[[1], 1], [[2], -I], [[4], -1]]])]](/support/helpjp/helpview.aspx?si=6631/file05844/math252.png)
| (2.10) |
V2 >
|
|

| (2.11) |
Example 3.
If the name of an algebra is passed to the program SolvableRepresentation, then the assumed representation is the adjoint representation of the algebra (or current frame).
Alg2 >
|
![L3 := _DG([["LieAlgebra", Alg3, [5]], [[[1, 2, 1], -1], [[1, 2, 5], 1], [[1, 3, 1], 1], [[1, 3, 5], -1], [[1, 4, 1], 2], [[1, 4, 2], 1], [[1, 4, 3], 1], [[2, 3, 1], -1], [[2, 3, 5], 1], [[2, 4, 3], -1], [[2, 5, 1], 1], [[2, 5, 5], -1], [[3, 4, 3], 1], [[3, 4, 5], -1], [[3, 5, 1], -1], [[3, 5, 5], 1], [[4, 5, 2], -1], [[4, 5, 3], -1], [[4, 5, 5], -2]]])](/support/helpjp/helpview.aspx?si=6631/file05844/math271.png)
|
![_DG([["LieAlgebra", Alg3, [5]], [[[1, 2, 1], -1], [[1, 2, 5], 1], [[1, 3, 1], 1], [[1, 3, 5], -1], [[1, 4, 1], 2], [[1, 4, 2], 1], [[1, 4, 3], 1], [[2, 3, 1], -1], [[2, 3, 5], 1], [[2, 4, 3], -1], [[2, 5, 1], 1], [[2, 5, 5], -1], [[3, 4, 3], 1], [[3, 4, 5], -1], [[3, 5, 1], -1], [[3, 5, 5], 1], [[4, 5, 2], -1], [[4, 5, 3], -1], [[4, 5, 5], -2]]])](/support/helpjp/helpview.aspx?si=6631/file05844/math274.png)
| (2.12) |
V2 >
|
|
The adjoint representation of this algebra is not upper triangular.
Alg3 >
|
|
| (2.13) |
Alg3 >
|
|
| (2.14) |
Alg3 >
|
|
| (2.15) |
Alg3 >
|
|
Now in this new basis the adjoint representation is upper triangular.
Alg4 >
|
|
| (2.16) |
Example 4.
An example with complex eigenvalues.
Alg4 >
|

|

| (2.17) |
Alg4 >
|
|
Alg5 >
|
|
| (2.18) |
Alg5 >
|
|
![_DG([["LieAlgebra", Alg6, [5, table( [ ] )]], [[[1, 4, 1], 4], [[1, 5, 1], 3], [[2, 4, 3], 2], [[2, 5, 2], 1], [[3, 4, 2], -1], [[3, 4, 3], 2], [[3, 5, 3], 1], [[4, 5, 1], 3], [[4, 5, 2], 2], [[4, 5, 3], -2]]])](/support/helpjp/helpview.aspx?si=6631/file05844/math349.png)
| (2.19) |
In this new basis the adjoint representation is upper triangular except for a 2x2 "complex" block on the diagonal for ad(e4).
Alg5 >
|
|
| (2.20) |
We rerun this example with the option method = "complex".
Alg5 >
|
|
| (2.21) |
Alg5 >
|
|
![_DG([["LieAlgebra", Alg7, [5, table( [ ] )]], [[[1, 4, 1], 4], [[1, 5, 1], 3], [[2, 4, 2], 1-I], [[2, 5, 2], 1], [[3, 4, 3], 1+I], [[3, 5, 3], 1], [[4, 5, 1], 3], [[4, 5, 2], 1], [[4, 5, 3], 1]]])](/support/helpjp/helpview.aspx?si=6631/file05844/math382.png)
| (2.22) |
Alg5 >
|
|
| (2.23) |
Example 5.
Let rho: g -> V be a representation of a nilpotent Lie algebra g on a vector space V. The representation is called a nilrepresentation if each matrix A = rho(x) is nilpotent, that is A^k = 0 for some k. Engel's theorem (see, for example, Fulton and Harris, page 125 or Varadarajan, page 189) asserts that if rho is a nilrepresentation, then there is a basis for V for which all the representation matrices are strictly upper triangular.
Alg5 >
|
![L5 := _DG([["LieAlgebra", Alg5, [6]], [[[1, 2, 2], 1], [[1, 2, 3], 1], [[1, 2, 4], -1], [[1, 2, 5], 1], [[1, 3, 3], -1/2], [[1, 3, 5], 1/2], [[1, 3, 6], -1/2], [[1, 4, 2], 1], [[1, 4, 3], 1], [[1, 4, 4], -1], [[1, 4, 5], 1], [[1, 5, 3], 1/2], [[1, 5, 5], -1/2], [[1, 5, 6], 1/2], [[1, 6, 3], 1], [[1, 6, 5], -1], [[1, 6, 6], 1], [[2, 3, 3], -1/2], [[2, 3, 5], -1/2], [[2, 3, 6], -1/2], [[2, 4, 5], -1], [[2, 6, 3], 1/2], [[2, 6, 5], 1/2], [[2, 6, 6], 1/2], [[3, 4, 5], 1], [[4, 6, 5], 1]]])](/support/helpjp/helpview.aspx?si=6631/file05844/math424.png)
|
![_DG([["LieAlgebra", Alg5, [6]], [[[1, 2, 2], 1], [[1, 2, 3], 1], [[1, 2, 4], -1], [[1, 2, 5], 1], [[1, 3, 3], -1/2], [[1, 3, 5], 1/2], [[1, 3, 6], -1/2], [[1, 4, 2], 1], [[1, 4, 3], 1], [[1, 4, 4], -1], [[1, 4, 5], 1], [[1, 5, 3], 1/2], [[1, 5, 5], -1/2], [[1, 5, 6], 1/2], [[1, 6, 3], 1], [[1, 6, 5], -1], [[1, 6, 6], 1], [[2, 3, 3], -1/2], [[2, 3, 5], -1/2], [[2, 3, 6], -1/2], [[2, 4, 5], -1], [[2, 6, 3], 1/2], [[2, 6, 5], 1/2], [[2, 6, 6], 1/2], [[3, 4, 5], 1], [[4, 6, 5], 1]]])](/support/helpjp/helpview.aspx?si=6631/file05844/math427.png)
| (2.24) |
Alg5 >
|
|
Alg5 >
|
|
V5 >
|
![M5 := map(Matrix, [[[-5, -9, 10, -4], [-4, -7, 8, -3], [-5, -9, 10, -4], [3, 5, -6, 2]], [[-8, -12, 14, -6], [-5, -8, 9, -4], [-9, -14, 16, -7], [0, 0, 0, 0]], [[-1, -2, 2, -1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 2, -2, 1]], [[-5, -8, 9, -4], [0, 0, 0, 0], [-5, -8, 9, -4], [-5, -8, 9, -4]], [[-1, -2, 2, -1], [0, 0, 0, 0], [-1, -2, 2, -1], [-1, -2, 2, -1]], [[-2, -4, 4, -2], [-2, -4, 4, -2], [-3, -6, 6, -3], [0, 0, 0, 0]]])](/support/helpjp/helpview.aspx?si=6631/file05844/math439.png)
|
V5 >
|
|

| (2.25) |
Check that Alg5 is a nilpotent algebra, that rho is a representation, and that rho is a nilrepresentation.
Alg5 >
|
|
| (2.26) |
Alg5 >
|
|
| (2.27) |
Alg5 >
|
|
| (2.28) |
Alg5 >
|
|
| (2.29) |
Alg5 >
|
|
![_DG([["LieAlgebra", Alg5a, [6, table( [ ] )]], [[[1, 5, 1], -1], [[1, 5, 3], 1], [[1, 5, 4], -2], [[1, 6, 2], 1/2], [[1, 6, 4], 1/2], [[2, 5, 2], -1/2], [[2, 5, 4], 1/2], [[3, 5, 1], -1], [[3, 5, 2], -1], [[3, 5, 3], 1], [[3, 5, 4], -1], [[3, 6, 4], 1], [[4, 5, 2], -1/2], [[4, 5, 4], 1/2], [[5, 6, 1], 1], [[5, 6, 2], 1], [[5, 6, 3], -1], [[5, 6, 4], 1]]])](/support/helpjp/helpview.aspx?si=6631/file05844/math491.png)
| (2.30) |
In this new basis the ad matrices are all nilpotent.
Alg5 >
|
|

| (2.31) |