Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Query[CartanDecomposition] - check that two subspaces in a Lie algebra define a Cartan decomposition.
Calling Sequences
Query()
Parameters
T - a list of vectors, defining a subalgebra of a Lie algebra on which the Killing form is negative-definite.
P - a list of vectors, defining a subspace of a Lie algebra on which the Killing form is positive-definite
Description
Let g be a semi-simple real Lie algebra. Then g is called compact if the Killing form of g is negative-definite, otherwise g is called non-compact.
A Cartan decomposition is a vector space decomposition g = t 4p , where [i] t is a subalgebra, [ii] p is a subspace, [iii] [t, p] 4 p, [iv] [p, p] 4 t, [v] the Killing form is negative-definite on t and [vi] Killing form is positive-definite on p.
Examples
Example 1.
We check to see if some decompositions of are Cartan decompositions. Initialize the Lie algebra .
The decomposition gives a Cartan decomposition.
The decomposition gives a symmetric pair but not a Cartan decomposition.
See Also
DifferentialGeometry, CartanInvolution, Killing, Query[SymmetricPair], Query[ReductivePair]
Download Help Document