>
|
|
Example 1. Prolongation of Jet Spaces
Define the jet space J^1(E1), where E1 = R^2 x R with coordinates (x, y, u) -> (x, y).
>
|
|
Display the jet coordinates, the coordinate vector fields, the 1-forms, and the contact 1-forms.
E1 >
|
|
| (2.1) |
E1 >
|
|
| (2.2) |
E1 >
|
|
| (2.3) |
E1 >
|
|
| (2.4) |
Prolong the jet space J^1(E) to J^3(E).
E1 >
|
|
| (2.5) |
Again display the jet coordinates, the coordinate vector fields, the 1-forms, and the contact 1-forms.
E1 >
|
|
| (2.6) |
E1 >
|
|
| (2.7) |
E1 >
|
|
| (2.8) |
E1 >
|
|
| (2.9) |
Example 2. Prolongation of Vector Fields
Define the jet space J^1(E2), where E2 = R x R with coordinates (x, u) -> (x).
E1 >
|
|
Define an arbitrary point vector field X1 on E2.
E2 >
|
|
E2 >
|
|
| (2.10) |
Prolong X1 to order 1--this agrees with the standard prolongation formula found in all texts.
E2 >
|
|
| (2.11) |
Define the infinitesimal generator X2 for a rotation in the x-u plane.
E2 >
|
|
| (2.12) |
Prolong X2 to order 1.
E2 >
|
|
| (2.13) |
Prolong X2 to order to 2--we can achieve the same result by prolonging pr1X2.
E2 >
|
|
| (2.14) |
E2 >
|
|
| (2.15) |
Define the jet space J^1(E3), where E3 = R^2 x R^2 with coordinates (x, y, u, v) -> (x, y).
E2 >
|
|
Define a vector field X3 whose flow simultaneously scales x, y, u, v.
E3 >
|
|
| (2.16) |
E3 >
|
|
| (2.17) |
Example 3. Prolongation of Transformations
Define the jet space J^1(F) where F = R x R with coordinates (y, v) -> (y).
E3 >
|
|
Define a projectable transformation from E1 to F.
F >
|
|
| (2.18) |
Prolong Phi1 to order 2.
E2 >
|
|
| (2.19) |
Define a differential substitution from J^2(E2) to F.
E2 >
|
|
| (2.20) |
Prolong Phi2 to order 2.
E2 >
|
|
| (2.21) |
Example 4. Prolongation of Differential Equations
Define a second order ode on E2 (coordinates x, u).
E2 >
|
|
| (2.22) |
Calculate the second order prolongation of DE1. Note that the list of jet variables to be solved for is also prolonged.
E2 >
|
|
| (2.23) |
Define a system of overdetermined partial differential equations in 2 independent variables x, y, and 1 dependent variable u.
E2 >
|
|
E4 >
|
|
| (2.24) |
The second prolongation of DE2 is an overdetermined system of Frobenius type--all the 4-th order derivatives of which can be solved for.
E4 >
|
|
| (2.25) |