Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
JetCalculus[GeneratingFunctionToContactVector] - find the contact vector field defined by a generating function
Calling Sequences
GeneratingFunctionToContactVector(f,)
Parameters
f - a Maple expression
Description
Let J^1(R^n, R) be the space of 1-jets of a function from R^n to R with contact 1-form Cu = du - u_i dx^i. A vector field X on J^1(R^n, R) such that LieDerivative(X, Cu) = F Cu is called an infinitesimal contact transformation or contact vector field.
There is a formula which assigns to each real-valued function S on J^1(R^n, R) a contact vector field X. The function S is called the generating function for the contact vector field X. The explicit formula for X in terms of S is given for n = 1, 2, 3 in Example 1. The formula in the general case can be found in P. J. Olver, Equivalence, Invariants and Symmetry, page 131
The command GeneratingFunctionToContactVector(S) returns the contact vector field defined by the function S.
The command GeneratingFunctionToContactVector is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form GeneratingFunctionToContactVector(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-GeneratingFunctionToContactVector(...).
Examples
Example 1.
The formula for the contact vector field in terms of the generating function with 1 independent variable.
The formula for the contact vector field in terms of the generating function with 2 independent variables.
The formula for the contact vector field in terms of the generating function with 3 independent variables.
Example 2.
We choose some specific generating functions and calculate the resulting contact vector fields.
Example 3.
Check the properties of the vector field obtained from S = u[0, 1]^2.
X preserves the contact 1-form Cu[0, 0].
X is the prolongation of its projection to the space of independent and dependent variables.
Example 4.
We use the commands GeneratingFunctionToContactVector and Flow to find a contact transformation.
Check that Phi is a contact transformation.
We note that Phi takes on a simple form for t = Pi/4 and that it linearizes the Monge-Ampere equation u[2, 0]*u[0, 2] - u[1, 1]^2 = 1.
See Also
DifferentialGeometry, JetCalculus, Flow, LieDerivative, ProjectionTransformation, Prolong, Pullback, Pushforward
Download Help Document