Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DEtools[ReduceHyperexp] - a reduction algorithm for hyperexponential functions
Calling Sequence
ReduceHyperexp(H, x, newH)
Parameters
H
-
hyperexponential function of x
H1
H2
x
variable
newH
(optional) name; assigned a computed equivalence of H
Description
For a specified hyperexponential function H of x, the (H1, H2) := ReduceHyperexp(H, x, newH) calling sequence constructs two hyperexponential functions H1 and H2 such that and the certificate has a differential rational normal form with v of minimal degree.
The output from ReduceHyperexp is a sequence of two elements each of which is either or written in the form
(The form shown above is called a multiplicative decomposition of the hyperexponential function .)
ReduceHyperexp is a generalization of the reduction algorithm for rational functions by Hermite (recall that a rational function is also a hyperexponential function). It also covers the differential Gosper's algorithm.
Examples
See Also
DEtools[AreSimilar], DEtools[Gosper], DEtools[IsHyperexponential], DEtools[MultiplicativeDecomposition], SumTools[Hypergeometric][SumDecomposition]
References
Geddes, Keith; Le, Ha; and Li, Ziming. "Differential rational canonical forms and a reduction algorithm for hyperexponential functions." Proceedings of ISSAC 2004. ACM Press. (2004): 183-190.
Download Help Document