Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
diff/x$n - compute a (partial) symbolic integer order derivative (or integral) of an expression
Calling Sequence
diff( f(x), x$n )
Parameters
f(x)
-
algebraic expression depending on x to be differentiated (or integrated)
x
name; differentiation (or integration) variable
n
symbol understood to be an integer representing the differentiation (or integration) order
Description
The diff( f(x), x$n ) calling sequence uses a database of core differentiation formulas, sum representations for functions, full partial fraction expansions, and tools from the gfun package, to compute formulas for the nth (integer order) derivative of a given expression. To compute derivatives of fractional order see fracdiff.
You can enter the command diff/x$n using either the 1-D or 2-D calling sequence. For example, diff(cos(x), x$n) is equivalent to .
To compute formulas for the nth integral, specify -n for the order, for instance as in (diff(expr, x$(-n)) - see example at the end of this page.
The environment variable _EnvFallingNotation allows you to select how "x to the n falling" is represented: x^falling(n) := x(x-1)(x-2)...(x-n+1) can be represented by the pochhammer symbol, GAMMA notation, or factorial notation. Each has some advantages. The default value is pochhammer.
Note: The diff implicitly assumes that n is an integer. Substitution of fractional values into the resulting formula will not compute fractional derivatives - for that purpose use fracdiff. Depending on the case, symbolic order differentiation can be a computationally expensive operation; uncomputed sums in the output are represented using Sum, not sum.
The Computational Approach
The expression is recursively examined for simple expressions. A direct formula for monomials of the form C*(x-a)^p is used when such patterns are matched in the input. Rational functions are converted to full partial fraction form.
When complicated terms are found in the input, a sequence of increasingly-powerful heuristics is tried: guessing a differential equation satisfied by the term, converting it to hypergeometric form, or converting it to Sum form by means of the built-in functional database.
Examples
Compute the nth derivative of cos(x).
Compare with the result obtained by direct differentiation.
A basic formula: symbolic derivative of a monomial:
Use a different notation for the "falling" function:
A more difficult function:
See Also
convert/fullparfrac, convert/parfrac, D, diff, eval, evalf, fdiff, fracdiff, int, Sum or sum
References
Benghorbal, Mhenni, and Corless, Robert M. "The nth derivative." SIGSAM Bull (Communications in Computer Algebra). Vol. 36 No. 1, (2002): 10-14. http://doi.acm.org/10.1145/565145.565149
Download Help Document