Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
algcurves[genus] - The genus of an algebraic curve
Calling Sequence
genus(f, x, y, opt)
Parameters
f
-
squarefree polynomial specifying an algebraic curve
x, y
variables
opt
(optional) a sequence of options
Description
The genus of an irreducible algebraic curve is a non-negative integer. It equals the dimension of the holomorphic differentials. It also equals (d-1)(d-2)/2 minus the sum of the delta invariants, which can be computed with algcurves[singularities]. Here d is the degree of the curve.
The polynomial f must be squarefree and have degree at least 1, otherwise an error message follows. A complete irreducibility check is not performed, only a few partial tests.
Examples
Warning, negative genus so the curve is reducible
This f is a polynomial of degree 10 having a maximal number of cusps according to the Plucker formulas. It was found by Rob Koelman. It has 26 cusps and no other singularities, hence the genus is (10-1)*(10-2)/2 - 26 = 10.
See Also
AIrreduc, algcurves[differentials], algcurves[parametrization], algcurves[singularities]
Download Help Document