Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
PolynomialTools[ShiftlessDecomposition] - compute a shiftless decomposition of a univariate polynomial
Calling Sequence
ShiftlessDecomposition(f,x)
Parameters
f
-
polynomial in x
x
indeterminate
Description
The ShiftlessDecomposition command computes a shiftless decomposition of f w.r.t. x.
It satisfies the following properties.
are squarefree and pairwise shift coprime, that is, for and all integers , we have if and only if and
is constant w.r.t. x, and are nonconstant primitive polynomials w.r.t. x.
The and are non-negative integers with and for all .
The shiftless decomposition is unique up to reordering and multiplication by units. The are ordered by ascending degree in x, but the ordering within the same degree is not determined.
If f is constant w.r.t. x, then the return value is .
Partial factorizations of the input are not taken into account.
Examples
See Also
gcd, PolynomialTools, PolynomialTools[GreatestFactorialFactorization], PolynomialTools[ShiftEquivalent], PolynomialTools[Translate], sqrfree
References
Gerhard, J.; Giesbrecht, M.; Storjohann, A.; and Zima, E.V. "Shiftless decomposition and polynomial-time rational summation." Proceedings International Symposium on Symbolic and Algebraic Computation, pp. 119-126. ed. J.R. Sendra. 2003.
Download Help Document