Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Physics[Vectors][Curl] - compute the curl by using the nabla differential operator
Physics[Vectors][Divergence] - compute the divergence by using the nabla differential operator
Physics[Vectors][Gradient] - compute the gradient by using the nabla differential operator
Physics[Vectors][Laplacian] - compute the Laplacian by using the nabla differential operator
Calling Sequence
Curl(A)
Divergence(A)
Gradient(A)
Laplacian(A)
Remark: these calling sequences are also valid with the inert %Curl, %Divergence, %Gradient, %Laplacian commands
Parameters
A
-
any algebraic (vector or scalar) expression
Description
Curl, Divergence, Gradient and Laplacian, respectively return the curl, the divergence, the gradient and the Laplacian of a given vectorial or scalar function. When the command's name is prefixed by , an unevaluated representation for these operations is returned.
The %Curl, %Divergence, %Gradient and %Laplacian are the inert forms of Curl, Divergence, Gradient and Laplacian, that is: they represent the same mathematical operations while holding the operations unperformed. To activate the operations use value.
Curl, Divergence and Gradient check their arguments (for consistency) before sending the task to Nabla. So, if is a vector, then Gradient(A_) will interrupt the computation with an error message, as well as Divergence(A) and Curl(A) when is a scalar (not a vector). All these differential operations are realized just w.r.t the geometrical coordinates . Therefore, if does not depend on these global geometrical coordinates, these commands (as well as Nabla) return 0.
For the conventions about the geometrical coordinates and vectors see ?conventions
Examples
The Gradient of a function
The Divergence of a Gradient is equal to the Laplacian
The Laplacian of a vector function in spherical coordinates
The Curl of a Gradient is identically zero
Depending on the context the inert representations of these commands, obtained by prefixing the command's name with %, serve better the purpose of representing the mathematical objects
The Curl of non-projected vector function (note the underscore in 'V_' to represent vectors)
The Divergence of a Curl is identically zero
The Divergence and Curl of a projected vector function (projected vectors don't need an "arrow" - the underscore "_" mentioned in the previous example to be represented)
See Also
operations, Physics, Physics conventions, Physics examples, Physics/Vectors, Setup
Download Help Document