Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Physics[Psigma] - the Pauli's 2 x 2 sigma matrices
Calling Sequence
Psigma[n]
Parameters
n
-
an integer between 0 and 4, or an algebraic expression representing it, identifying a Pauli matrix
Description
The Psigma[n] command represents the three Pauli matrices; that is, the set of Hermitian and unitary matrices:
where is the imaginary unit (to represent it with a lowercase , see interface,imaginaryunit). Together with , representing the 2 x 2 identity matrix, the Pauli matrices form an orthogonal basis. The matrices are displayed as .
When multiplied by the imaginary unit, these matrices are a realization of the Lie algebra of the SU(2) group, which is isomorphic to the Lie algebra of SO(3). So, the are also a matrix realization of infinitesimal rotations in 3D space, hence serving as representation for the 3D angular momentum operator in Physics.
The Pauli matrices satisfy the commutation relations , where is the Levi-Civita symbol, and range from 1 to 3. The also satisfy the anticommutation relations , where is the Kronecker delta. Those two relations can be written as .
For from 1 to 3, the Pauli matrices satisfy , and (the 2 x 2 identity matrix), where Det represents the determinant, and Trace represents/computes the trace. In the context of the Physics package (see conventions), you can also use the index 0, as in , and it will be automatically mapped into .
Examples
See Also
conventions, Physics, Physics conventions, Physics examples, Physics/*, Trace
Download Help Document