Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LaguerreL - Laguerre function
Calling Sequence
LaguerreL(n, a, x)
Parameters
n
-
algebraic expression
a
(optional) nonrational algebraic expression or rational number
x
Description
The LaguerreL function computes the nth Laguerre polynomial.
If the first parameter is a non-negative integer, the LaguerreL function computes the nth generalized Laguerre polynomial with parameter a evaluated at x.
If a is not specified, LaguerreL(n, x) computes the nth Laguerre polynomial which is equal to LaguerreL(n, 0, x).
The generalized Laguerre polynomials are orthogonal on the interval with respect to the weight function . They satisfy:
For positive integer a, the relationship for LaguerreL(n, a, x) and LaguerreL(n, x) is the following.
Some references define the generalized Laguerre polynomials differently than Maple. Denote the alternate function as altLaguerreL(n, a, x). It is defined as follows:
For general positive integer a, the relationship for Maple's LaguerreL and altLaguerreL is the following.
Laguerre polynomials satisfy the following recurrence relation:
For n not equal to a non-negative integer, the analytic extension of the Laguerre polynomial is given by:
Examples
Using the alternate definition for the Laguerre polynomials:
See Also
ChebyshevT, ChebyshevU, GAMMA, GegenbauerC, HermiteH, JacobiP, LegendreP, orthopoly[L], simplify
Download Help Document