Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DifferentialGeometry:-Tools[DGscalar, DGvolume, DGzero]
Calling Sequence
DGzero(keyword1, options)
DGvolume(keyword2, options)
DGscalar(keyword3, options)
Parameters
keyword1
-
a string, one of: "biform", "form", "vector", "tensor"
keyword2
a string, one of: "biform", "form"
keyword3
a string, one of: "biform", "form", "tensor"
options
each command admits a defined frame name as an optional last argument
Description
The command DGzero creates a zero biform, form, vector or tensor. The degree of the form or the index type of the tensor is specified as a second argument. This command is useful when, for example, a tensor T is to be computed recursively as sum of tensors.
The command DGvolume creates the standard top-dimensional form on a manifold M or a biform of top degree horizontal on the jet space J^k(E), where E is a fiber bundle over a base manifold M. It is convenient to use this command whenever a Lagrangian for some variational problem is to be defined as a biform of top horizontal degree on the jet space. The command DGvolume accepts as a second optional argument a Maple expression k, where DGvolume(keyword2, k) = k &mult DGvolume(keyword2).
The command DGscalar constructs a degree 0 form, a rank 0 tensor, or a biform of degree [0, 0].
The command DGscalar accepts as a second optional argument a Maple expression k, where DGscalar(keyword3, k) = k &mult DGscalar(keyword3).
The command DGzero is part of the DifferentialGeometry:-Tools package, and so can be used in the form DGzero(...) only after executing the commands with(DifferentialGeometry) and with(Tools) in that order. It can always be used in the long form DifferentialGeometry:-Tools:-DGzero. The commands DGvolume and DGscalar work the same way.
Examples
Define some manifolds.
Example 1.
Create the zero vector for the current frame.
Example 2.
Create the zero vector on the manifold M.
Example 3.
Create the zero 2-form for the current frame.
Example 4.
Create the zero type (1, 2) tensor on the manifold M.
Example 5.
Create the zero type (1, 2) tensor on the manifold E.
Example 6.
Create the zero type (2, 2) biform on the jet space of E.
Example 7.
Create the top degree form on M with coefficient exp(- x^2 - y^2).
Example 8.
Represent the Maple expression ln(x) as a degree 0 form on M.
_DG([["form", M, 0], [[[], ln(x)]]])
See Also
DifferentialGeometry, Tools, DGform
Download Help Document