Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
LieAlgebras[SatakeAssociate] - find the non-compact simple root associated to a given non-compact root in the Satake diagram
Calling Sequences
SatakeAssociate(alpha, Delta0, Deltac)
Parameters
alpha - a column vector, a non-compact root of a non-compact, simple Lie algebra
Delta0 - a list of column vectors, the simple roots of a non-compact simple Lie algebra
Deltac -(optional) a list of column vectors, defining the compact roots of non-compact simple Lie algebra
Description
Let Δ be the root system for a non-compact, simple Lie algebra. Let be a set of positive roots, the compact roots, be the simple roots and the compact simple roots. We chose the positive roots to be closed under complex conjugation. Then for each root there is a unique root such that The root is called the Satake associate of .
Examples
Example 1.
Here is the Satake diagram for and the corresponding simple roots.
All the roots are non-compact so that the Satake associate is just the complex conjugate, for example,
The root is its own associate.
Example 2
Roots and are compact. The root is real and is therefore its own Satake associate. The root satisfies
and is therefore also its own Satake associate.
Example 3.
There are no compact roots. The roots and are real and therefore are their own Satake associates. Because there are no compact roots the Satake associate of is its complex conjugate which is
Example 4.
The roots and are compact. Since
the Satake associate of is itself. Since
the Satake associate of is
These calculations agree with the output of the command SatakeAssociate.
See Also
DifferentialGeometry, CompactRoots, Details for Satake Diagram, DynkinDiagram, LieAlgebras, PositiveRoots, Simple Roots, SatakeDiagram, SimpleLieAlgebraData, SimpleLieAlgebraProperties
Download Help Document