Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Query[LeviDecomposition] - check that a pair of subalgebras define a Levi decomposition of a Lie algebra
Calling Sequences
Query([R, S], "LeviDecomposition")
Parameters
R - a list of independent vectors in a Lie algebra g
S - a list of independent vectors in a Lie algebra g
Description
A pair of subalgebras [R, S] in a Lie algebra define a Levi decomposition if R is the radical of g, S is a semisimple subalgebra, and g = R + S (vector space direct sum). Since the radical is an ideal we have [R, R] in R, [R, S] in R, and [S, S] in S. The radical R is unique, the semisimple subalgebra S in a Levi decomposition is not.
Query([R, S], "LeviDecomposition") returns true if the pair R, S is a Levi decomposition of g and false otherwise.
The command Query is part of the DifferentialGeometry:-LieAlgebras package. It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).
Examples
Example 1.
We initialize three different Lie algebras and print their multiplication tables.
Alg1 is solvable and therefore the radical is the entire algebra.
Alg2 is semisimple and therefore the radical is the zero subalgebra.
Alg3 has a non-trivial Levi decomposition.
It is easy to see that in this last example the Levi decomposition is not unique.
First we find the general complement to the radical R3 using the ComplementaryBasis program.
Next we determine for which values of the parameters {k1, k2, k3, k4, k5, k6} the subspace SS0 is a Lie subalgebra. We find that k1 = 0, k2 = k3, k4 = - k5, k6 = 0.
See Also
DifferentialGeometry, LieAlgebras, ComplementaryBasis, LeviDecomposition, MultiplicationTable, Query
Download Help Document