Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DEtools[particularsol] - find a particular solution to a nonlinear ODE, or a linear non-homogeneous ODE, without computing its general solution
Calling Sequence
particularsol(ODE, y(x))
particularsol(ODE_coeff_list, x)
Parameters
ODE
-
non-linear, or linear non-homogeneous ODE
y(x)
dependent variable (required only when not obvious); can be any unknown function of one variable
ODE_coeff_list
list of coefficients representing a non-homogeneous linear ODE (see DEtools[convertAlg])
x
independent variable
Description
The particularsol routine is used to find a particular solution for a nonlinear ordinary differential equation (ODE), or for a non-homogeneous linear ODE without computing the general solution to its homogeneous part.
For nonlinear ODEs, the approach used is to compute symmetries and from there compute invariant (particular) solutions.
For linear ODEs, particularsol tries, in sequence, to compute particular solutions of rational (see DEtools[ratsols]), exponential and d'Alembertian form (see LinearOperators[dAlembertianSolver]). If no particular solution is found, particularsol returns NULL.
When the input is an ODE, the output of particularsol is as dsolve's output, that is, an equation with the unknown on the left-hand-side and the (particular) solution on the right-hand-side.
When the input is a list of the coefficients of and its derivatives representing a linear ODE, for instance obtained from the ODE using DEtools[convertAlg], the output is not an equation but an expression representing the particular solution - see the examples.
In the case of a linear ODE, while particularsol is useful to compute a particular solution when the general solution of the homogeneous part of the ODE is not known, a particular solution can always be computed if that general solution is known - for that purpose use DEtools[varparam].
This function is part of the DEtools package, and so it can be used in the form particularsol(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[particularsol](..).
Examples
A third order non-linear ODE
No general solution is known for ode. A particular solution for it, however, depending on one arbitrary constant, is computable via
A second order non-homogeneous linear ODE whose homogeneous part is out of the scope of dsolve and a particular rational solution for it
Represent this non-homogeneous linear ODE using a list with the coefficients of y(x) and its derivatives
Note particularsol is not restricted to the computation of rational particular solutions
See Also
DEtools, DEtools[convertAlg], DEtools[varparam], dsolve, odetest
Download Help Document