Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DEtools[matrixDE] - find solutions of a linear system of ODEs in matrix form
Calling Sequence
matrixDE(A, B, t, method=matrixexp)
matrixDE(A, B, t, solution=solntype)
Parameters
A, B
-
coefficients of a system ; if B not specified, then assumed to be a zero vector
t
independent variable of the system
method=matrixexp
(optional) matrix exponentials
solution=solntype
(optional) where solution=polynomial or solution=rational
Description
The matrixDE command solves a system of linear ODEs of the form . If B is not specified then it is assumed to be the zero vector.
An option of the form method = matrixexp can be specified to use matrix exponentials (in the case of constant coefficients).
An option of the form solution = polynomial or solution = rational can be specified to search for polynomial or rational solution. In this case, the function invokes LinearFunctionalSystems[PolynomialSolution] or LinearFunctionalSystems[RationalSolution].
The command returns a pair with , which is an by Matrix, and , which is an by Vector. A particular solution of the system can be then written in the form where is by and . If B is zero then P will also be zero.
If a system is expressed in terms of equations, dsolve can be used instead.
Examples
Nonconstant homogeneous system
Matrix of arbitrary coefficients
Verification of solution
Nonhomogeneous system of two variables with constant coefficients
Nonconstant homogeneous system with unknown coefficients
General nonhomogeneous system of two variables with constant coefficients
Finding a polynomial solution
See Also
DEtools, dsolve, LinearFunctionalSystems[PolynomialSolution], LinearFunctionalSystems[RationalSolution]
Download Help Document