Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DEtools[PolynomialNormalForm] - construct the differential polynomial normal form of a rational function
Calling Sequence
PolynomialNormalForm(F, x)
Parameters
F
-
rational function of x
x
variable
Description
Let F be a rational function of x over a field K of characteristic 0. The PolynomialNormalForm(F,x) command constructs the differential polynomial normal form for F.
The output is a sequence of 3 elements where are polynomials over K such that:
for all non-negative integers .
.
Examples
Check the result:
See Also
DEtools[Gosper], DEtools[RationalCanonicalForm], SumTools[Hypergeometric][PolynomialNormalForm]
References
Almkvist, G, and Zeilberger, D. "The method of differentiating under the integral sign." Journal of Symbolic Computation. Vol. 10. (1990): 571-591.
Download Help Document