Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DEtools[regular_parts] - Find regular parts of a linear ode
Calling Sequence
regular_parts(L, y, t, [x=x0])
Parameters
L
-
linear homogeneous differential equation
y
unknown function to search for
t
name used as parametrization variable
x0
(optional) a rational, an algebraic number or infinity
Description
The regular_parts function computes the minimal generalized exponents of L at the point x0 and the corresponding regular parts. These are operators L_e which result from L by replacing y(x) by exp(int(e, x))*y(x). The Newton polygon of L_e at x_0 has a segment of slope 0 and 0 is a root of the indicial polynomial.
The equation must be homogeneous and linear in y and its derivatives, and its coefficients must be rational functions in the variable x.
x0 must be a rational or an algebraic number or the symbol infinity. If x0 is not passed as argument, x0 = 0 is assumed.
The output is a set of solutions which are of the form exp(int(e, x))*y where e is a minimal generalized exponent and y is given as DESol object.
The command with(DEtools,regular_parts) allows the use of the abbreviated form of this command.
Examples
Then 0 is a singular point of this equation. Newton polygon is:
There are slopes > 0 so 0 is an irregular singular point.
yields two transformed differential equations:
These operators have a Newton polygon with slope 0:
This can help to find closed-form solutions:
Since the general solution of the regular part is a+b*x+c*x^2 for some constants a,b and c, we obtain the general solution of the original equation by taking into account the exponential transformation:
See Also
DEtools, DEtools/formal_sol
Download Help Document