Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DEtools[eigenring] - compute the endomorphisms of the solution space
DEtools[endomorphism_charpoly] - give the characteristic polynomial of an endomorphism
Calling Sequence
eigenring(L, domain)
endomorphism_charpoly(L, r, domain)
Parameters
L
-
differential operator
r
differential operator in the output of eigenring
domain
list containing two names
Description
The input L is a differential operator. Denote V(L) as the solution space of L. eigenring computes a basis (a vector space) of the set of all operators r for which r(V(L)) is a subset of V(L). So r is an endomorphism of the solution space V(L). The characteristic polynomial of this map can be computed by the command endomorphism_charpoly(L,r).
For endomorphisms r, the product of L and r is divisible on the right by L. If the optional third argument is the equation verify=true then eigenring checks if the output satisfies this condition. This should not be necessary though.
The argument domain describes the differential algebra. If this argument is the list then the differential operators are notated with the symbols and . They are viewed as elements of the differential algebra C(t)[Dt] where is the field of constants.
If the argument domain is omitted then the differential specified by the environment variable _Envdiffopdomain will be used. If this environment variable is not set, then the argument domain may not be omitted.
These functions are part of the DEtools package, and so they can be used in the form eigenring(..) and endomorphism_charpoly(..) only after executing the command with(DEtools). However, they can always be accessed through the long form of the command by using DEtools[eigenring](..) or DEtools[endomorphism_charpoly](..).
Examples
Take the differential ring C(x)[Dx]:
Compute a basis v for the endomorphisms. Compute an eigenvalue of . Then compute the greatest common right divisor . Then the solution space is the kernel of.
See Also
DEtools[DFactor], DEtools[GCRD], DEtools[Homomorphisms], diffop
References
For a description of the method used, see:
van der Put, M., and Singer, M. F. Galois Theory of Linear Differential Equations, Vol. 328. Springer: 2003. An electronic version of this book is available at http://www4.ncsu.edu/~singer/ms_papers.html.
van Hoeij, M. "Rational Solutions of the Mixed Differential Equation and its Application to Factorization of Differential Operators." ISSAC '96 Proceedings. (1996): 219-225.
Download Help Document