Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
DEtools[MultiplicativeDecomposition] - construct two multiplicative decompositions of a hyperexponential function
Calling Sequence
MultiplicativeDecomposition[1](H, x)
MultiplicativeDecomposition[2](H, x)
Parameters
H
-
hyperexponential function of x
x
variable
Description
Let H be a hyperexponential function of x over a field K of characteristic 0. The MultiplicativeDecomposition[i](H,x) calling sequence constructs the ith multiplicative decomposition for H, .
If the MultiplicativeDecomposition command is called without an index, the first multiplicative decomposition is constructed.
A multiplicative decomposition of H is a pair of rational functions such that . Let R be the rational certificate of H, i.e., . Let be a differential rational normal form of R. Then is a multiplicative decomposition of H. Hence, each differential rational normal form of the certificate R of H is also a multiplicative decomposition of H.
The construction of MultiplicativeDecomposition[i](H,x) is based on , for .
The output is of the form where V and F are rational function of x over K.
Examples
See Also
DEtools[AreSimilar], DEtools[RationalCanonicalForm], DEtools[ReduceHyperexp], SumTools[Hypergeometric][MultiplicativeDecomposition]
References
Geddes, Keith; Le, Ha; and Li, Ziming. "Differential rational canonical forms and a reduction algorithm for hyperexponential functions." Proceedings of ISSAC 2004. ACM Press, (2004): 183-190.
Download Help Document