Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
type/series - series data structure
Calling Sequence
type(expr, series)
Parameters
expr
-
expression
Description
The function type/series returns true if the value of expr is Maple's series data structure, explained below.
The series data structure represents an expression as a truncated series in one specified indeterminate, expanded about a particular point. It is created by a call to the series function.
op(0, expr), with expr of type series, returns x-a where x denotes the ``series variable'' and a denotes the particular point of expansion. op(2*i-1, expr) returns the ith coefficient (a general expression) and op(2*i, expr) returns the corresponding integer exponent.
The exponents are ``word-size'' integers, in increasing order.
The representation is sparse; zero coefficients are not represented.
Usually, the final pair of operands in this data type are the special order symbol O(1) and the integer n which indicates the order of truncation. However, if the series is exact then there will be no order term, for example, the series expansion of a low-degree polynomial.
Formally, the coefficients of the series are such that
for some constants k1 and k2, for any , and as x approaches a. In other words, the coefficients may depend on x, but their growth must be less than polynomial in x. O(1) represents such a coefficient, rather than an arbitrary constant.
A zero series is immediately simplified to the integer zero.
Examples
See Also
op, series, taylor, type, type/laurent, type/taylor
Download Help Document