Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
type/monomial - check for a monomial
Calling Sequence
type(m, monomial)
type(m, monomial(K))
type(m, monomial(K, v))
Parameters
m
-
any expression
K
(optional) type name for the coefficient domain
v
(optional) variable(s)
Description
The call type(m, monomial(K, v)) checks to see if m is a monomial in the variable(s) v over the coefficient domain K, where v is either an indeterminate or a list or set of indeterminates.
A monomial is defined to be a polynomial in v which does not contain a sum. This function returns true if m is such a monomial, and false otherwise.
If v is omitted, it is taken to be the set of all indeterminates appearing in m, that is, it checks if m is a monomial in all of its variables.
The domain specification K should be a type name, such as rational or algebraic. If K is specified, then this function will check that the coefficients of m come from the domain K. If the coefficient domain K is omitted, then only coefficients of type constant are allowed.
Examples
See Also
indets, type, type[polynom]
Download Help Document