Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
tensor[invert] - form the inverse of any second rank tensor_type
Calling Sequence
invert(T, detT)
Parameters
T
-
second rank tensor the determinant of which is nonzero
detT
unassigned name as an output parameter (for holding the determinant of T, which is a by-product of this routine)
Description
This procedure computes the determinant of the second rank tensor T, and whenever the T determinant does not vanish, it constructs the inverse tensor of T.
In the case of a purely covariant or contravariant tensor T, the inverse T~ of T is defined in the usual way, corresponding to matrix algebra
where delta is the Kronecker delta.
In the case of a mixed tensor T, the inverse T~ of T is defined so that it satisfies
Thus, for the mixed case, T~ is the transpose of the matrix inverse of T. Define the inverse for the mixed case this way so that tensor[invert] can be used to compute inverses of the components of tetrads and frames. In the case of the natural basis, tensor[invert] is well suited for determining the contravariant metric tensor components from the covariant ones (and vice versa).
Indexing function: The invert routine preserves the use of the symmetric indexing function. That is, if the input tensor_type uses the symmetric indexing function for its component arrays, then the result also uses the symmetric indexing function.
Simplification: This routine uses the `tensor/invert/simp` routine for simplification purposes. The simplification routine is applied to each component of result after it is computed. By default, `tensor/invert/simp` is initialized to the `tensor/simp` routine. It is recommended that the `tensor/invert/simp` routine be customized to suit the needs of the particular problem.
This function is part of the tensor package, and so can be used in the form invert(..) only after performing the command with(tensor) or with(tensor, invert). The function can always be accessed in the long form tensor[invert](..).
Examples
Compute the inverse of the mixed tensor_type T. Note that the result is the transpose of the matrix inverse:
Define the covariant Kerr-Newman metric tensor:
See Also
tensor, tensor[simp]
Download Help Document