Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
tensor[geodesic_eqns] - generate the Euler-Lagrange equations for the geodesic curves
Calling Sequence
geodesic_eqns(coord, param, Cf2)
Parameters
coord
-
list of coordinate names
param
name of the variable to parametrize the curves with
Cf2
Christoffel symbols of the second kind
Description
The function geodesic_eqns(coord, Tau, Cf2) generates (but does not solve) the Euler-Lagrange equations of the geodesics for a metric with Christoffel symbols of the second kind Cf2 and coordinate variables coord. The equations are written in terms of the coordinate variable names as functions of the given parameter Tau. They are returned in the format of a list of equations.
Cf2 should be indexed using the cf2 indexing function provided by the tensor package. It can be computed using the Christoffel2 routine.
Examples
Determine the geodesic equations for the Poincare half-plane. The coordinates are:
The metric is:
Now generate the geodesic equations:
How about Euclidean 3-space in Cartesian coordinates?
and in spherical-polar coordinates?
See Also
dsolve, tensor, tensor[Christoffel2], tensor[indexing]
Download Help Document