Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
tensor[d2metric] - compute the second partial derivatives of the covariant metric tensor components
Calling Sequence
d2metric( d1g, coord)
Parameters
d1g
-
first partials of the covariant metric tensor
coord
list of names representing the coordinate variables
Description
Given the coordinate variables, coord, and the first partials of the covariant metric tensor, d1g, d2metric( d1g, coord ) computes the second partial derivatives of g, which will be a new tensor_type of rank four and which uses the `d2met` indexing function provided by the tensor package to implement the symmetry in the indices of the second partials.
d1g must be a rank 3 tensor_type with character [-1,-1,-1] and must use the `cf1` indexing function for its component array. It is recommended that d1g be computed using tensor[d1metric].
The extra index due to differentiation is of covariant character, by convention. Thus, the index_char field of the result is [-1, -1, -1, -1].
Indexing Function: The `d2met` indexing function is meant to index the second partials of the covariant metric tensor components. Specifically, it implements the symmetry in the first and second indices (due to the symmetry in the metric components themselves) and the symmetry in the third and fourth indices (due to the symmetry of the mixed partial derivatives) of a four index quantity.
Simplification: This routine uses the `tensor/d2metric/simp` routine for simplification purposes. The simplification routine is applied to each component of result after it is computed. By default, `tensor/d2metric/simp` is initialized to the `tensor/simp` routine. It is recommended that the `tensor/d2metric/simp` routine be customized to suit the needs of the particular problem. For example, if the metric component functions are not fully known but are known to satisfy certain differential equations, the `tensor/d2metric/simp` routine could be used to make substitutions for the partial derivatives of these functions.
For computing the partial derivatives of the components of an arbitrary tensor, use tensor[partial_diff].
This function is part of the tensor package, and so can be used in the form d2metric(..) only after performing the command with(tensor) or with(tensor, d2metric). The function can always be accessed in the long form tensor[d2metric](..).
Examples
Define the coordinate variables and the covariant components of the Schwarzchild metric.
Compute the first partials of g:
Compute the second partials of g:
All indices are covariant
The symmetries in the indices are implemented with indexing:
Extract only the nonzero entries
map( proc(x) if compts[op(x)]<>0 then op(x)=compts[op(x)] else NULL end if end proc, [ indices(compts) ] );
See Also
Physics[Christoffel], Physics[D_], Physics[d_], Physics[Einstein], Physics[g_], Physics[LeviCivita], Physics[Ricci], Physics[Riemann], Physics[Weyl], tensor, tensor/partial_diff, tensor[d1metric], tensor[indexing], tensor[simp]
Download Help Document