Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
tensor[Christoffel1] - compute the Christoffel symbols of the first kind
Calling Sequence
Christoffel1(D1g)
Parameters
D1g
-
rank three tensor_type of character [-1,-1,-1] representing the partial derivatives of the COVARIANT metric tensor. The components of D1g must be defined using the `index/cf1` indexing function (see below) which takes care of the symmetry in the first two indices of the first partials of the metric tensor (due to the symmetry of the metric).
Description
Specifically,
The resultant tensor_type, Cf1 say, of this routine is the Christoffel symbols of the first kind, indexed as shown below:
where is in conventional notation.
D1g, the partials of the covariant metric should be obtained using the function tensor[d1metric] once the metric itself is known.
Indexing Function: Because of the symmetry in the first two indices of the Christoffel symbols of the first kind, the array of the calculated symbols use the `index/cf1` indexing function. This function indexes an array of rank 3 so that it is automatically symmetric in its first two indices. Use of this indexing function decreases the number of symbols that must be assigned and stored to the number of independent symbols.
Simplification: This routine uses the `tensor/Christoffel1/simp` routine to carry out simplification of each independent Christoffel symbol of the first kind. By default, it is initialized to the `tensor/simp` function. It is recommended that the `tensor/Christoffel1/simp` routine be customized to suit the particular needs of the problem at hand.
This function is part of the tensor package, and so can be used in the form Christoffel1(..) only after performing the command with(tensor) or with(tensor, Christoffel1). The function can always be accessed in the long form tensor[Christoffel1](..).
Examples
Define the coordinate variables and the covariant metric under the Schwarzchild metric.
The user may also view the result using the tensor package function displayGR.
See Also
Physics[Christoffel], Physics[D_], Physics[d_], Physics[Einstein], Physics[g_], Physics[LeviCivita], Physics[Ricci], Physics[Riemann], Physics[Weyl], tensor, tensor/display_allGR, tensor[Christoffel2], tensor[d1metric], tensor[displayGR], tensor[indexing], tensor[simp], tensor[tensorsGR]
Download Help Document