Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Gcd - Greatest common divisor of polynomials over algebraic extensions
Calling Sequence
evala(Gcd(P, Q, 'p', 'q'), opts)
Parameters
P, Q
-
polynomials over an algebraic number or function field.
p, q
(optional) names
opts
(optional) an option name or a set of option names.
Options currently supported: 'independent'.
Description
This function computes the monic greatest common divisor of two polynomials with coefficients in an algebraic function field or an algebraic number field.
Since the ordering of objects may vary from a session to another, the leading coefficient may change accordingly.
Algebraic functions and algebraic numbers may be represented by radicals or with the RootOf notation (see type,algnum, type,algfun, type,radnum, type,radfun).
The optional arguments p and q are respectively assigned the co-factors of P and Q. Namely, , where G is the Gcd.
The computation is performed in the domain , where:
x is the set of names in P and Q which do not appear inside a RootOf or a radical,
K is a field generated over the rational numbers by the coefficients of P and Q.
The arguments P and Q must be polynomials in x.
Partial factorizations are preserved. The result may be a product of powers of expanded polynomials.
Algebraic numbers and functions occurring in the results are reduced modulo their minimal polynomial (see Normal).
The RootOf and the radicals defining the algebraic numbers must form an independent set of algebraic quantities, otherwise an error is returned. Note that this condition needs not be satisfied if the expression contains only algebraic numbers in radical notation (i.e. 2^(1/2), 3^(1/2), 6^(1/2)). For, a basis over Q for the radicals can be computed by Maple in this case.
To skip the independence checking, use the option 'independent'.
If a or b contains functions, their arguments are normalized recursively and the functions are frozen before the computation proceeds.
Other objects are frozen and considered as variables.
Examples
The second argument below is not a polynomial. Therefore, an error is returned:
Error, (in evala/Gcd/preproc0) invalid arguments
If a polynomial defining a RootOf is reducible, the RootOf does not generate a well-defined field. In some cases, an error is returned:
Error, (in evala/Gcd/preproc) reducible RootOf detected. Substitutions are {RootOf(_Z^2-_Z) = 0, RootOf(_Z^2-_Z) = 1}
To pretend that all the defining polynomials are irreducible, use the option 'independent':
Alternatively, use indexed RootOfs:
See Also
evala, Gcd, gcd, Gcdex, gcdex, numtheory[GIgcd], RootOf
Download Help Document