Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
VectorCalculus[*] - An overloaded version of Star that deals with scalar multiplication of Vectors
Calling Sequence
s*v
Parameters
s
-
algebraic; the scalar to scale the Vector
v
Vector(algebraic); the Vector to scale
Description
Returns the scalar multiplication of s and v.
An overloaded version for the VectorCalculus package that deals with scaling Vectors (scalar multiplication) in different coordinate systems.
The following table describes the interaction between different types of Vector objects in different coordinate systems when the Star operator is applied.
coord()
*
coord(*)
1
free Vector
cartesian
curved
error
2
rooted Vector(root)
any
rooted Vector (root)
3
vector field
4
position Vector
Note that in 2-D math, the Star operator appears as a dot.
Examples
Only free Vectors in cartesian coordinates can be scaled.
Rooted Vectors in any coordinate system can be scaled.
Vector Fields in any coordinate system can be scaled.
Position Vectors can be scaled.
See Also
VectorCalculus, VectorCalculus[PositionVector], VectorCalculus[RootedVector], VectorCalculus[Vector], VectorCalculus[VectorField]
Download Help Document