Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[Hypergeometric][KoepfGosper] - indefinite summation of j-fold hypergeometric terms
Calling Sequence
KoepfGosper(T, n)
Parameters
T
-
hypergeometric term in n
n
name; specifies summation index
Description
The KoepfGosper(T, n) command solves the problem of indefinite summation of j-fold hypergeometric terms, that is, for the input j-fold hypergeometric term T of n, it constructs a function which is a sum of hypergeometric terms of n such that , provided that such a exists. Otherwise, the function returns the error message ``no solution found''.
The parameter T is a j-fold hypergeometric term in n if is a rational function in n.
Examples
Note that T is not a hypergeometric term in n. Hence, Gosper's algorithm is not applicable to T.
See Also
SumTools[Hypergeometric], SumTools[Hypergeometric][Gosper], SumTools[Hypergeometric][KoepfZeilberger]
References
Koepf, W. "Algorithms for m-fold Hypergeometric Summation." Journal of Symbolic Computation. Vol. 20 No. 4. (1995): 399-417.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.
Download Help Document