Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[Hypergeometric][IsZApplicable] - test the applicability of Zeilberger's algorithm to hypergeometric terms
Calling Sequence
IsZApplicable(F, n, k, En, 'Zpair')
Parameters
F
-
hypergeometric term in n and k
n
name
k
En
(optional) name; denote the shift operator with respect to n
'Zpair'
(optional) name; assigned computed Z-pair
Description
Let F be a hypergeometric term in n and k. The IsZApplicable(F, n, k, En, 'Zpair') command determines the applicability of Zeilberger's algorithm to F. It returns true if Zeilberger's algorithm is applicable to F. Otherwise, it returns false.
If Zeilberger's algorithm is applicable to the function F and the fourth and the fifth optional arguments are specified, the fifth argument 'Zpair' is assigned the computed Z-pair for F.
If the input F is not a rational function of n and k, IsZApplicable returns FAIL. In this case, if the optional arguments En and 'Zpair' are specified, Zeilberger(F, n, k, En) is called. If it succeeds in finding a Z-pair for F, the computed Z-pair is assigned to 'Zpair'.
Examples
In the following example, F is not a proper hypergeometric term. However, Zeilberger's algorithm is applicable to F:
In the following example, F is not a proper hypergeometric term, and Zeilberger's algorithm is not applicable to F either:
The input is a hypergeometric term of n and k.
See Also
SumTools[Hypergeometric], SumTools[Hypergeometric][IsProperHypergeometricTerm], SumTools[Hypergeometric][MinimalZpair], SumTools[Hypergeometric][Verify], SumTools[Hypergeometric][Zeilberger], SumTools[Hypergeometric][ZpairDirect]
References
Abramov, S.A. "Applicability of Zeilberger's Algorithm to Hypergeometric Terms." Proceedings ISSAC'2002, pp. 1-7. ACM Press, 2002.
Abramov, S.A., and Le, H.Q. "Applicability of Zeilberger's Algorithm to Rational Functions." Proceedings FPSAC'2000, pp. 91-102. Springer-Verlag LNCS, 2000.
Download Help Document