Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SumTools[Hypergeometric][BottomSequence] - bottom sequence of a hypergeometric term
Calling Sequence
BottomSequence(T, x, opt)
Parameters
T
-
hypergeometric term in x
x
name
opt
(optional) equation of the form primitive=true or primitive=false
Description
Consider as an analytic function in satisfying a linear difference equation , where and are polynomials in . For and any integer , let be the -th coefficient of the Laurent series expansion for at . An integer is called depth of if for all and all integers , and for some .
The bottom sequence of is the doubly infinite sequence defined as for all integers , where is the depth of . The command BottomSequence(T, x) returns the bottom sequence of in form of an expression representing a function of (integer values of) . Typically, this is a piecewise expression.
The bottom sequence is defined at all integers and satisfies the same difference equation as .
If is Gosper-summable and is its indefinite sum found by Gosper's algorithm, then the depth of is also . If the optional argument primitive=true (or just primitive) is specified, the command returns a pair , where is the bottom sequence of and is the bottom sequence of or FAIL if is not Gosper-summable.
Note that this command rewrites expressions of the form in terms of GAMMA functions .
If assumptions of the form and/or are made, the depth and the bottom of are computed with respect to the given interval instead of .
Compatibility
The SumTools[Hypergeometric][BottomSequence] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
Note that is not equivalent to :
Error, numeric exception: division by zero
However, satisfies the same difference equation as :
is an indefinite sum of :
Now assume that :
With that assumption, and are equivalent, and is an indefinite sum of both:
Example of a hypergeometric term with parameters:
Note that is considered non-integer.
Warning, the assumptions about variable(s) k are ignored
See Also
assuming, binomial, SumTools[DefiniteSum][SummableSpace], SumTools[Hypergeometric], SumTools[Hypergeometric][Gosper]
References
S.A. Abramov, M. Petkovsek. "Analytic solutions of linear difference equations, formal series, and bottom summation." Proc. of CASC'07, (2007): 1-10.
S.A. Abramov, M. Petkovsek. "Gosper's Algorithm, Accurate Summation, and the Discrete Newton-Leibniz Formula." Proceedings of ISSAC'05, (2005): 5-12.
Download Help Document