Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Student[VectorCalculus][TangentLine] - computes the line tangent to a curve in
Calling Sequence
TangentLine(f, var)
Parameters
f
-
free or position Vector, Vector- or scalar-valued procedure, or scalar expression; specify the curve
var
name=algebraic or algebraic; specify the point at which the tangent line is computed, and optionally the parameter of the curve
Description
The TangentLine(f, var) command computes the line tangent to the curve f at the point specified in var. The curve can be entered as a free or position Vector, a Vector-valued procedure, a scalar expression, or a scalar-valued procedure. If f is entered as a procedure, then it must have precisely one parameter.
If f is a scalar expression, then it must be given in terms of a variable from the current coordinate system, and the current coordinate system must be two-dimensional (see VectorCalculus[SetCoordinates]). If Maple cannot infer the parameter of the curve, an error will be raised, requesting a parameter variable name to be provided in the second argument. The expression is put into the Vector form using a new line parameter, usually t. For example, if the coordinate system is cartesian[x,y], and f is a function of y, then f is converted to a Vector of the form <f, t>.
If var is an equation, the left-hand side is the parameter of the curve and the right-hand side is the point in question. If var is an expression, the parameter of the curve will be inferred from f.
The following circumstances require the second argument to be of the form name=algebraic, giving the parameter name of the curve:
f is a Vector and more than one indeterminate is found in the components of f;
f is a scalar expression and is given in terms of more than one coordinate variable name from the current coordinate system;
f is a scalar expression and does not depend on any coordinate variable name from the current coordinate system; or
f is a scalar-valued procedure and its parameter name is not a coordinate variable name from the current coordinate system.
If the input curve is a Vector or a scalar, the output is a position Vector. If the input curve is a procedure, the output is a procedure.
If the current coordinate system is not indexed by its coordinate variable names, then the default names will be used, should they be requested during computation. For example, if the current coordinate system is cartesian (in two dimensions), then if required, the default names x and y will be used as the coordinate variable names.
Examples
See Also
Student[VectorCalculus], Student[VectorCalculus][SetCoordinates], Student[VectorCalculus][Tangent], Student[VectorCalculus][TangentPlane], Student[VectorCalculus][TangentVector], Student[VectorCalculus][Vector]
Download Help Document