Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Student[VectorCalculus][PositionVector] - creates a position vector with specified components and a coordinate system
Calling Sequence
PositionVector(comps)
PositionVector(comps, c)
Parameters
comps
-
list(algebraic); the components of the Position Vector
c
name or name[name, name, ...]; specify the coordinate system possibly indexed by the coordinate names
Description
The PositionVector function constructs a position Vector, one of the four principal Vector data structures of the Student[VectorCalculus] package. Note that the Student[VectorCalculus] and the VectorCalculus packages share the same Vector data structures.
For details on the differences between the four principal Vector data structures, namely, position Vectors, rooted Vectors, free Vectors, and vector fields, see VectorCalculus,Details.
The call PositionVector(comps, c) returns a position Vector in a cartesian enveloping space with components interpreted using the corresponding transformations from c coordinates to cartesian coordinates.
If no coordinate system argument is present, the components of the position Vector are interpreted in the current coordinate system (see SetCoordinates).
The position Vector is a cartesian Vector rooted at the origin. This has no mathematical meaning in non-cartesian coordinates, so the c parameter only changes the way the components are interpreted. Note that the Student[VectorCalculus] package only supports the cartesian, polar, spherical and cylindrical coordinate systems.
If comps has indeterminates representing parameters, the position Vector serves to represent a curve or a surface.
To differentiate a curve or a surface specified via a position Vector, use diff.
To evaluate a vector field along a curve or a surface given by a position Vector, use evalVF.
A curve or surface given by a position Vector can be plotted using PlotPositionVector.
The position Vector is displayed in column notation in the same manner as rooted Vectors are, as a position Vector can be interpreted as a Vector that is (always) rooted at the cartesian origin.
A position Vector cannot be mapped to a basis different than cartesian coordinates. In order to see how the same position Vector would be described in other coordinate systems, use GetPVDescription.
Standard binary operations between position Vectors like +/-, *, Dot Product, and Cross Product are defined.
Binary operations between position Vectors and vector fields, free Vectors or rooted Vectors are not defined; however, a position Vector can be converted to a free Vector in cartesian coordinates via ConvertVector.
Examples
Position Vectors
Curves
Surfaces
See Also
Student[VectorCalculus], Student[VectorCalculus][diff], Student[VectorCalculus][evalVF], Student[VectorCalculus][PlotPositionVector], Student[VectorCalculus][RootedVector], Student[VectorCalculus][Vector], Student[VectorCalculus][VectorField]
Download Help Document