Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Student[NumericalAnalysis][UpperBoundOfRemainderTerm] - compute the upper bound of the remainder term at a given point
Calling Sequence
UpperBoundOfRemainderTerm(p)
UpperBoundOfRemainderTerm(p, pts)
Parameters
p
-
a POLYINTERP structure
pts
(optional) numeric, list(numeric); a point or list of points at which the upper bound(s) of the remainder term are computed
Description
The UpperBoundOfRemainderTerm command returns the value(s) of upper bound of the remainder term of the approximated polynomial at the specified point(s) pts or at the extrapolated point(s) from the POLYINTERP structure, depending on whether pts is specified or not.
The pts must be within the range of the approximating polynomial.
The upper bounds are returned in a list of the form: [[, , [...], ...], = .
The POLYINTERP structure is created using the PolynomialInterpolation command or the CubicSpline command.
In order for the upper bound to be computed, the POLYINTERP structure p must have an associated function, given by the PolynomialInterpolation command.
If the POLYINTERP structure was created with the CubicSpline command, the boundary conditions must be clamped.
Notes
A remainder term is sometimes called an error term.
Examples
See Also
Student[NumericalAnalysis], Student[NumericalAnalysis][ApproximateExactUpperBound], Student[NumericalAnalysis][ApproximateValue], Student[NumericalAnalysis][ComputationOverview], Student[NumericalAnalysis][ExactValue], Student[NumericalAnalysis][PolynomialInterpolation], Student[NumericalAnalysis][RemainderTerm]
Download Help Document