Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Student[MultivariateCalculus][ChangeOfVariables] - return the change of variables of a multivariate integral function or algebraic expression
Student[MultivariateCalculus][Revert] - return to previous form of multivariate integral
Calling Sequence
ChangeOfVariables(f, g)
ChangeOfVariables(f, h)
Revert(m)
Parameters
f
-
algebraic expression or inert multiple integral
g
list of equations
h
list of indexed names
m
inert integral with unevaluated region of integration
Description
The ChangeOfVariables command returns a new integral or algebraic expression specified by the change of variables equations.
The second parameter of the command can be either a list of equations representing a suitable transformation or a list with two entries containing coordinate systems.
In the first form, the transformation equations must specify new variable names for any coordinate that is to be changed; unchanged variables can be omitted from the transformation or given in the form of an identity equation, such as . For example, ChangeOfVariables(Int(Int(a*x,x),y), [u=a*x]) is valid, as is ChangeOfVariables(Int(Int(a*x,x),y), [u=a*x,y=y]), but ChangeOfVariables(Int(Int(a*x,x),y), [y=a*x,x=y]) is not.
The coordinate systems available are cartesian and polar for two dimensions, and cartesian, cylindrical, and spherical for three dimensions.
The coordinate systems must be specified in the form [OldCoordinateSystem[OldVariables],NewCoordinateSystem[NewVariables]]. Examples:
* [polar[r,theta], cartesian[x,y]]
* [cylindrical[r,theta,u], cartesian[x,y,z]]
* [spherical[R,theta1,phi], cylindrical[r,theta2,z]]
In the polar, cylindrical, and spherical coordinate systems, the first variable is assumed to be the radial component.
In general, when working with definite integrals, it is not always possible to find a new region of integration after applying a change of variables. Thus, if ChangeOfVariables cannot find the new region of integration, it retains the old region and indicates that the region has not been converted. If this occurs, use the Revert function to return to the previous integral before ChangeOfVariables was applied. Revert only works on integrals where the region of integration cannot be found. Otherwise, the same integral is returned.
Examples
See Also
PDEtools[dchange], Student, Student[MultivariateCalculus]
Download Help Document