Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Student[LinearAlgebra][Norm] - compute the p-norm of a Matrix or Vector
Calling Sequence
Norm(A, p, options)
Parameters
A
-
Matrix or Vector
p
(optional) non-negative number, infinity, Euclidean, or Frobenius; norm selector that is dependent upon A
options
(optional) parameters; for a complete list, see LinearAlgebra[Norm]
Description
The Norm(A) command computes the Euclidean (2)-norm of A.
Note: The default norm in the top-level LinearAlgebra package is the infinity norm, as that norm is faster to compute for Matrices.
The allowable values for the norm-selector parameter, p, depend on whether A is a Vector or a Matrix.
Vector Norms
If V is a Vector and p is included in the calling sequence, p must be one of a non-negative number, infinity, Frobenius, or Euclidean.
The p-norm of a Vector V when is .
The infinity-norm of Vector V is .
Maple implements Vector norms for all . For the final pth root computation is not done, that is, the calculation is . This defines a metric on , but the pth root is not a norm and the form computed by Norm in such cases is more useful. The limiting case of returns the number of nonzero elements of V (this is a floating-point number if p or any element of V is a floating-point number).
For Vectors, the 2-norm can also be specified as either Euclidean or Frobenius.
Matrix Norms
If A is a Matrix and p is included in the calling sequence, p must be one of 1, 2, infinity, Frobenius, or Euclidean.
The p-norm of a Matrix A is max(Norm(A . V, p)), where the maximum is calculated over all Vectors V with Norm(V, p) = 1. Maple implements only Norm(A, p) for and the special case (which is not actually a Matrix norm; the Matrix A is treated as a "folded up" Vector). These norms are defined as follows.
Norm(A, 1) = max(seq(Norm(A[1..-1, j], 1), j = 1 .. ColumnDimension(A)))
Norm(A, infinity) = max(seq(Norm(A[i, 1..-1], 1), i = 1 .. RowDimension(A)))
Norm(A, 2) = sqrt(max(seq(Eigenvalues(A . A^%T)[i], i = 1 .. RowDimension(A))))
Norm(A, Frobenius) = sqrt(add(add((A[i,j]^2), j = 1 .. ColumnDimension(A)), i = 1 .. RowDimension(A)))
For Matrices, the 2-norm can also be specified as Euclidean.
Examples
See Also
LinearAlgebra[Norm], Student[LinearAlgebra], Student[LinearAlgebra][Normalize], Student[LinearAlgebra][Operators]
Download Help Document