Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Student[LinearAlgebra][LUDecomposition] - compute the PLU or PLU1R decomposition of a Matrix
Calling Sequence
LUDecomposition(A, out, options)
Parameters
A
-
Matrix
out
(optional) equation of the form output = obj where obj is one of 'P', 'L', 'U', 'U1', or 'R', or a list consisting of one or more of these names; selects result objects to compute
options
(optional) parameters; for a complete list, see LinearAlgebra[LUDecomposition]
Description
The LUDecomposition command computes a PLU decomposition or a modified PLU1R decomposition of the Matrix A.
Depending on what is included in the output option (out), an expression sequence containing one or more of the factors P, L, U, U1, and R can be returned. The objects are returned in the same order as specified in the output list.
Note: Either U or the pair U1 and R may be returned, but not both.
The LUDecomposition(A) calling sequence is equivalent to LUDecomposition(A, output=['P','L','U']). This LU decomposition generates a square unit lower triangular L factor and an upper triangular factor U with the same dimensions as A so that . The Matrix P is a permutation Matrix.
The PLU1R decomposition is achieved by using LUDecomposition(A, output=['P','L','U1','R']). This further factors U into where U1 is square upper triangular factor and R is the unique reduced row echelon form of the Matrix A. In this case, .
The output option (out) determines the content of the returned expression sequence.
Examples
To reduce a Matrix using Gaussian elimination, specify the 'U' object:
To reduce a Matrix using Gauss-Jordan elimination, specify the 'R' object:
See Also
LinearAlgebra[LUDecomposition], Student[LinearAlgebra], Student[LinearAlgebra][GaussianElimination], Student[LinearAlgebra][ReducedRowEchelonForm]
References
For more information on the P*L*U1*R decomposition see:
Corless, Robert M., and Jeffrey, David J. "The Turing Factorization of a Rectangular Matrix." Sigsam Bulletin, Vol. 31 no. 3. (September 1997): 20-28.
This paper names the U1 factor U.
Download Help Document