Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Student[LinearAlgebra][IsOrthogonal] - test if a Matrix is orthogonal
Student[LinearAlgebra][IsUnitary] - test if a Matrix is unitary
Calling Sequence
IsOrthogonal(A, options)
IsUnitary(A, options)
Parameters
A
-
square Matrix
options
(optional) parameters; for a complete list, see LinearAlgebra[IsOrthogonal]
Description
The IsOrthogonal(A) command determines if is an orthogonal Matrix (, where is the transpose and is the identity Matrix).
In general, the IsOrthogonal command returns true if it can determine that Matrix is orthogonal, false if it can determine that the Matrix is not orthogonal, and FAIL otherwise.
The IsUnitary(A) command determines if is a unitary Matrix (, where is the Hermitian transpose and is the identity Matrix).
In general, the IsUnitary command returns true if it can determine that Matrix is unitary, false if it can determine that the Matrix is not unitary, and FAIL otherwise.
Examples
See Also
LinearAlgebra[IsOrthogonal], map, simplify, Student[LinearAlgebra], Student[LinearAlgebra][IdentityMatrix], Student[LinearAlgebra][Operators], Student[LinearAlgebra][RotationMatrix]
Download Help Document