Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Student[LinearAlgebra][Eigenvectors] - compute the eigenvectors of a square Matrix
Calling Sequence
Eigenvectors(A, options)
Parameters
A
-
square Matrix; Matrix whose eigenvectors are required
options
(optional) parameters; for a complete list, see LinearAlgebra[Eigenvectors]
Description
The Eigenvectors(A) command returns an expression sequence of two elements. The first element is the Vector of eigenvalues (that is, exactly what is returned by the Eigenvalues(A) command.) The second is the Matrix of corresponding eigenvectors.
For example, after
(ev, EV) := Eigenvectors(A);
for each column index i, .
Note: If the input Matrix A is defective (does not have a full set of linearly independent eigenvectors) then some of the columns of the Matrix of eigenvectors are 0 (and hence are not eigenvectors). See JordanForm.
Examples
See Also
LinearAlgebra[Eigenvectors], Student[LinearAlgebra], Student[LinearAlgebra][CharacteristicMatrix], Student[LinearAlgebra][Eigenvalues], Student[LinearAlgebra][EigenvectorsTutor], Student[LinearAlgebra][IdentityMatrix], Student[LinearAlgebra][JordanForm]
Download Help Document