Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Differentiation Rules for Calculus1
Rules
See Student[Calculus1] for a general introduction to the Calculus1 subpackage of the Student package.
See SingleStepOverview for an introduction to the step-by-step (or single-step) functionality of the Calculus1 package.
The following table lists the built-in rules for differentiation that do not take parameters. These rules can be passed as the index to Rule or as a rule argument to Understand.
Rule
Alternate Names
Description
chain
constant
constantmultiple
``
difference
identity
int
power
product
quotient
sum
The name of any univariate function can also be used as a rule argument to the Rule command. The name of any univariate function recognized by Maple, for example, sin, can be passed as a rule argument to the Understand command (where recognized means that it is of type mathfunc).
There is one differentiation rule which requires a parameter: rewrite. This rule can be used as the index to a call to Rule, but cannot be given as a rule argument to Understand. This rule is used to change the form of the expression being differentiated. It has the general form:
[rewrite, , , ...]
The effect of applying the rewrite rule is to perform each substitution listed as a parameter to the rule, where occurrences of the left-hand side of each substitution are replaced by the corresponding right-hand side.
The main application of this rule is to rewrite an expression of the form , where the exponent (at least) depends on the differentiation variable, as an exponential. The rule would thus be given as:
[rewrite, ]
Note: The Rule routine does not attempt to validate the rewrite rules you provide.
Examples
Creating problem #1
Error, (in Student:-Calculus1:-Rule[sum]) unable to determine which calculus operation is being applied in this problem; you can provide this information as the 2nd argument on your call to Rule or Hint
Creating problem #2
Creating problem #3 Rule [power] does not apply
Creating problem #4
This example illustrates how to handle an unknown univariate function.
Creating problem #5
The current problem is complete
See Also
diff, Diff, Student, Student[Calculus1], Student[Calculus1][DiffTutor], Student[Calculus1][SingleStepOverview]
Download Help Document