Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
Slode[candidate_points] - determine points for power series solutions
Calling Sequence
candidate_points(ode, var, 'points_type'=opt)
candidate_points(lode, 'points_type'=opt)
Parameters
ode
-
linear ODE with polynomial coefficients
var
dependent variable, for example y(x)
opt
(optional) type of points; one of dAlembertian, hypergeom, rational, polynomial, or all (the default).
LODEstr
LODEstruct data structure
Description
The candidate_points command determines candidate points for which power series solutions with d'Alembertian, hypergeometric, rational, or polynomial coefficients of the given linear ordinary differential equation exist.
If ode is an expression, then it is equated to zero.
The routine returns an error message if the differential equation ode does not satisfy the following conditions.
ode must be linear in var
ode must have polynomial coefficients in
ode must either be homogeneous or have a right hand side that is rational in
The coefficients of ode must be either rational numbers or depend rationally on one or more parameters.
If opt=all, the output is a list of three elements:
a set of hypergeometric points, which may include the symbol 'any_ordinary_point'
a set of rational points;
a set of polynomial points.
Otherwise, the output is the set of the required points.
Note that the computation of candidate points for power series solutions with d'Alembertian coefficients is currently considerably more expensive computationally than for the other three types of coefficients.
Examples
Inhomogeneous equations are handled:
An equation which has d'Alembertian series solutions at any ordinary point but doesn't have hypergeometric ones:
See Also
LODEstruct, Slode, Slode[candidate_mpoints]
Download Help Document