Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
SNAP[QuasiGCD] - compute Schoenhage's quasi-GCD for a pair of univariate numeric polynomials
Calling Sequence
QuasiGCD(a, b, z, tau = eta)
Parameters
a, b
-
univariate numeric polynomials
z
name; indeterminate for a and b
tau = eta
(optional) equation where eta is of type numeric and non-negative; stability parameter
Description
The QuasiGCD(a, b, z) command returns a univariate numeric polynomial g with a positive float eta such that g is a quasi-GCD with precision eta for the input polynomials (a,b). (See [3,2] for a definition of a quasi-GCD in the sense of Schoenhage.)
This quasi-GCD g is derived from the stable algorithm of [2] as follows. The algorithm of [2] computes a numerical pseudo remainder sequence (ai,bi) for (a,b) in a weakly stable way, accepting only the pairs that are well-conditioned (because the others produce instability). The maximum index i for which (ai,bi) is accepted yields the quasi-GCD g=ai provided the 1-norm of bi is small enough in a sense precised in [2]. The value of eta depends in particular on the value of bi and on the 1-norm of the residual error at the last accepted step.
If the problem is poorly conditioned, the QuasiGCD(a, b, z) command may return FAIL (rather than a meaningless answer). Here, ill-conditioning is a function of the parameter tau. Its default value is the cubic root of the current value of the Digits variable. Decreasing the value of tau yields a more reliable solution. Increasing the value of tau reduces the risk of failure.
Examples
See Also
SNAP[DistanceToCommonDivisors], SNAP[EpsilonGCD]
References
Beckermann, B., and Labahn, G. "A fast and numerically stable Euclidean-like algorithm for detecting relatively prime numerical polynomials." Journal of Symbolic Computation. Vol. 26, (1998): 691-714.
Beckermann, B., and Labahn, G. "When are two numerical polynomials relatively prime?" Journal of Symbolic Computation. Vol. 26, (1998): 677-689.
Schoenhage, A. "Quasi-GCD computations" Journal of Complexity. Vol. 1, (1985): 118-137.
Download Help Document