Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[PolynomialRing] - create a polynomial ring
Calling Sequence
PolynomialRing(X)
PolynomialRing(X, U)
PolynomialRing(X, p)
PolynomialRing(X, U, p)
Parameters
X
-
list of variables by decreasing order
U
set of parameters (optional)
p
positive prime integer (optional)
Description
The function call PolynomialRing(X,U,p) creates a data structure representing the ring of polynomials with variables in X and coefficients in the field K defined as follows. If then K is the field of rational functions with variables in U and with coefficients in the field of rational numbers. If then it must be a prime and K is the field of rational functions with variables in U and with coefficients in the prime field of characteristic . If U is empty, then K is simply or depending whether is zero or not.
If U is omitted, then U is assumed to be the empty set.
If p is omitted, then p is assumed to be .
The elements of R are multivariate polynomials with multivariate rational functions as coefficients. However, internally, the RegularChains package clears up denominators as often as possible. This is why the results provided by the RegularChains package are generally polynomials without any fractions. But this is not always possible. For instance, the operation NormalForm often needs to introduce fractions in its results.
In the description of all the other functions of the RegularChains library, we shall call a polynomial ring the output of a function call to PolynomialRing.
In the polynomial ring returned by PolynomialRing(X,U,p) the elements of X are called the variables, those of U are the parameters and p is called the characteristic.
Typically, but not always, the variables are the unknowns of some system of equations, inequations and inequalities. whereas the parameters do not satisfy any constraints.
The command DisplayPolynomialRing returns the contents of a polynomial_ring data structure, that is, its list of variables, its list of parameters and its characteristic.
This command is part of the RegularChains package, so it can be used in the form PolynomialRing(..) only after executing the command with(RegularChains). However, it can always be accessed through the long form of the command by using RegularChains[PolynomialRing](..).
Examples
Variables : [x, y, z] Parameters : {} Characteristic : 0
Variables : [x, y, z] Parameters : {} Characteristic : 5
Variables : [x, y, z] Parameters : {a, b, c} Characteristic : 0
Variables : [x, y, z] Parameters : {a, b, c} Characteristic : 5
See Also
DisplayPolynomialRing, RegularChains
Download Help Document