Maple für Professional
Maple für Akademiker
Maple für Studenten
Maple Personal Edition
Maple Player
Maple Player für iPad
MapleSim für Professional
MapleSim für Akademiker
Maple T.A. - Testen & beurteilen
Maple T.A. MAA Placement Test Suite
Möbius - Online-Courseware
Machine Design / Industrial Automation
Luft- und Raumfahrt
Fahrzeugtechnik
Robotics
Energiebranche
System Simulation and Analysis
Model development for HIL
Anlagenmodelle für den Regelungsentwurf
Robotics/Motion Control/Mechatronics
Other Application Areas
Mathematikausbildung
Technik
Allgemein- und berufsbildende Schulen
Testen und beurteilen
Studierende
Finanzmodelle
Betriebsforschung
Hochleistungsrechnen
Physik
Live-Webinare
Aufgezeichnete Webinare
Geplante Veranstaltungen
MaplePrimes
Maplesoft-Blog
Maplesoft-Mitgliedschaft
Maple Ambassador Program
MapleCloud
Technische Whitepapers
E-Mail Newsletters
Maple-Bücher
Math Matters
Anwendungs-Center
MapleSim Modell-Galerie
Anwenderberichte
Exploring Engineering Fundamentals
Lehrkonzepte mit Maple
Maplesoft Welcome-Center
Resource-Center für Lehrer
Help-Center für Studierende
RegularChains[ParametricSystemTools][BorderPolynomial] - compute the border polynomial of a semi-algebraic system
Calling Sequence
BorderPolynomial(F, N, P, H, d, R)
Parameters
R
-
polynomial ring
F
list of polynomials of R
N
P
H
d
positive integer
Description
The input is a parametric semi-algebraic system whose parameters are the last d variables of R and whose polynomial equations, non-negative polynomial inequalities, (strictly) positive polynomial inequalities, and polynomial inequations are given respectively by F, N, P, and H.
The command BorderPolynomial returns an object of type border_polynomial. It is a list of polynomials of R the product of which is the border polynomial of the input system.
If the output border polynomial only contains the parameters, above each parameter value not canceling the border polynomial, the input parametric system has finitely many solutions. Determining conditions on the parameters for the input system to have a prescribed (finite) number of solutions is achieved by the command RealRootClassification.
If the input system is not sufficiently generic (and in particular if it is not generically zero-dimensional with respect to the d parameters) then the output is set to a special value, as shown in the examples below.
The base field of R is meant to be the field of real numbers. Thus R must be of characteristic zero and must have no parameters (in the sense of the RegularChains library).
Examples
The reason why border polynomials must form of type (and cannot just be seen as lists of polynomials) is that under special circumstances, the border polynomial of a parametric semi-algebraic system takes an exceptional value.
The first such case is when the parameters do not appear in the system of polynomials; then there are no border polynomials as in the example below.
Another special circumstance is that of overdetermined or inconsistent systems, as in the example below
A last special circumstance is when the input system has "generically" infinitely many complex solutions, as in the example below (this is because of the d=2).
See Also
ComplexRootClassification, DiscriminantSequence, RealRootClassification , RegularChains
References
Yang, L.; Hou, X.; and Xia, B. "A complete algorithm for automated discovering of a class of inequality-type theorems." Science China, F. Vol. 44, (2001): 33-49.
Download Help Document